\begin{aligned} &\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}+\cdots+\frac{x^{2n-1}}{(2n-1)!}+o(x^{2n}) \\ &\cos x=1-\frac{x^2}{2}+\frac{x^4}{4!}+\cdots+\frac{x^{2n}}{(2n)!}+o(x^{2n+1}) \\ &e^x=1+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots+\frac{x^n}{n!}+o(x^{n+1}) \\ &\ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}+\cdots+(-1)^{n+1}\frac{x^n}{n}+o(x^n) \\ &\frac{1}{1-x}=1+x+x^2+x^3+\cdots+x^n+o(x^{n+1}) \\ &(1+x)^a=1+\frac{a}{1!}x+\frac{a(a-1)}{2!}x^2+\frac{a(a-1)(a-2)}{3!}x^3+\cdots+\frac{a(a-1)\cdots(a-n+1)}{n!}x^n+o(x^{n+1}) \end{aligned}
对于每一项我们都展开到1阶(cos展开到2阶):
\begin{aligned} \sin x&=x+o(x) \\ \cos x&=1-\frac{x^2}{2}+o(x^2) \\ e^x&=1+\frac{x}{1!}+o(x) \\ \ln(1+x)&=x+o(x) \\ \frac{1}{1-x}&=1+x+o(x^2) \\ (1+x)^a&=1+\frac{a}{1!}x+o(x) \end{aligned}
从而得到常见的等价无穷小:
\begin{aligned} \sin x&\sim x \\ \cos x&\sim 1-\frac{1}{2}x^2 \\ e^x&\sim 1+{x} \\ \ln(1+x)&\sim x \\ \frac{1}{1-x}&\sim1+x \\ (1+x)^a&\sim 1+ax \\ (1+\beta x)^\alpha &\sim 1+\alpha\beta x \\ &\Rightarrow \sqrt[n]{1+x} \sim 1+\frac{1}{n}x \end{aligned}
还有一部分是不太常见的,比如:
\begin{aligned} a^x-1&\sim x\ln a \\ \log_{a}{(1+x)}&\sim\frac{x}{\ln a} \\ x-\sin x &\sim \arcsin x - x \sim \frac{1}{6}x^3 \\ \tan x - x&\sim x -\arctan x \sim \frac{1}{3}x^3 \end{aligned}